Question	Answer	Marks	Guidance
1	D	1	
2	D	1	

Qu	estion	Answer	Marks	Guidance
3	(a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	ALLOW half headed arrows
	(b)	The forward reaction is exothermic, so an increase in temperature favours the backward reaction (<i>owtte</i>) ✓ therefore there will be more N₂ and H₂ OR less NH₃ in the equilibrium mixture, AND therefore the value of the equilibrium constant will decrease (<i>owtte</i>) ✓	2	ALLOW names of compounds ALLOW reactants/product instead of compounds 2 nd mark only available if deduced from 1 st mark ALLOW ECF for 2 nd mark
	(c)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 2.37×10^{-6} kPa ⁻² award 5 marks IF answer = 2.37×10^{-6} with incorrect units award 4 marks At equilibrium, $n(H_2) = 0.300 \text{ (mol) } \text{AND}$ $n(NH_3) = 0.100 \text{ (mol) } \checkmark$ $p(N_2) = \frac{0.400}{0.800} \times 500 = 250 \text{ kPa AND}$ $p(H_2) = \frac{0.300}{0.800} \times 500 = 187.5 \text{ kPa AND}$ $p(NH_3) = \frac{0.100}{0.800} \times 500 = 62.5 \text{ kPa } \checkmark$ $\mathcal{K}_p = \frac{p(NH_3)^2}{p(N_2) \times p(H_2)^3} = \frac{62.5^2}{250 \times 187.5^3} \checkmark$ $= 2.37 \times 10^{-6} \checkmark \text{ kPa}^{-2} \checkmark$	5	Final answer must be correct and have the correct units to score all five marks ALLOW calculator value for K_p correctly rounded to three or more significant figures. If there is an alternative answer, check to see if there is any ECF credit possible using working below Correct values substituted into correct expression for K_p gains first three marks.

Question	Answer	Marks	Guidance
(d)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 2580 (tonnes) award 3 marks $n(NH_3) = \frac{1.96 \times 10^{10}}{24} \text{ OR } 8.167 \times 10^8 \text{ (mol)}$ AND $n(H_2) = \frac{8.167 \times 10^8}{2} \times 3 = 1.225 \times 10^9 \text{ (mol)} \checkmark$ Mass of $H_2 = \frac{2.450 \times 10^9}{1 \times 10^6} = 2450 \text{ (tonnes)} \checkmark$ Mass of H_2 for 95% yield = $\frac{2450 \times 100}{95} = 2580 \text{ (tonnes)} \checkmark$	3	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW 2.58×10^3 tonnes AW 100% yield = 2.063×10^{10} dm ³ \checkmark Amount of NH ₃ = 8.596×10^8 mol AND Amount of H ₂ = 1.289×10^9 mol \checkmark Mass of H ₂ = 2580 (tonnes) \checkmark
(e) (i)	$2NH_3 + NaOCl \rightarrow N_2H_4 + NaCl + H_2O \checkmark$	1	
(ii)	H 107° E N'''''HH H ✓ Bond angle 107° ✓	2	Diagram must attempt to show geometry around the nitrogen atom to be pyramidal ALLOW 106–108°
	Total	15	

Questic	Answer	Marks	Guidance
4	В	1	ALLOW 0.426 in the box

C	Question		Answer	Marks	Guidance
5	(a)		$\Delta G = \Delta H - T\Delta S$ linked to $y = mx + c$ (somewhere) \checkmark gradient = $-\Delta S \checkmark$	4	Could be: $\Delta G = -\Delta S T + \Delta H$ - sign required
			 P: ∆H / enthalpy change ✓ Q: (temperature) for reaction to be feasible/unfeasible OR (temperature) at which feasibility changes ✓ 		ALLOW $\Delta S = -gradient$ ALLOW 'point of feasibility' For Feasibility: ALLOW can take place/happen OR is spontaneous
	(b)	(i)	(Species have) different states/phases ✓	1	IGNORE 'minimum/maximum temperature'
		(ii)	$(K_p =) p(CO(g))^4 \checkmark$	1	Allow species without state symbols and without brackets, e.g. p_{CO}^4 , $ppCO^4$, PCO^4 , $p(CO^4)$ etc.
		(iii)	$\Delta G = \Delta H - T\Delta S = 676.4 - (298 \times 0.7031)$ $= (+) 467 \text{ (kJ mol}^{-1}) \mathbf{OR} (+) 466876 \text{ (J mol}^{-1}) \checkmark$ $Non\text{-}feasibility statement}$ $\text{Non-}feasible \text{ when } \Delta G > 0$ $\mathbf{OR} \Delta G > 0 \mathbf{OR} \Delta H > T\Delta S \checkmark$ $Minimum \text{ temperature}$ $\text{minimum temperature}$ $\text{minimum temperature} = \frac{\Delta H}{\Delta S} = \frac{676.4}{0.7031}$ $= 962(.0) \text{ K} \checkmark$	3	IGNORE units ALLOW (+) 467 up to calculator value of 466.8762 correctly rounded ECF for any positive value determined in M1 ALLOW 962 up to calculator value of 962.0253165 correctly rounded

Question	Answer	Marks	Guidance
(iv)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -110.5, Award 3 marks.	3	For answer, ALLOW –111 (kJ mol ⁻¹)
	Correct expression $-13.5 = (4 \times -393.5) - (-1118.5 + 4 \times \Delta_f H(CO)) \checkmark$ Correct subtraction using ΔH and $\Delta_f H(Fe_3O_4)$ $4 \times \Delta_f H(CO) = (4 \times -393.5) - (-1118.5) + 13.5$ $= -442(.0) \text{ (kJ mol}^{-1}) \checkmark$ Calculation of $\Delta_f H(CO)$ formation $\Delta_f H(CO) = -\frac{442}{4} = -110.5 \text{ (kJ mol}^{-1}) \checkmark$		NOTE: IF any values are omitted, DO NOT AWARD any marks. e.g. –393.5 OR –13.5 may be missing
			Any other number: CHECK for ECF from 1st marking point for expressions using ALL values with ONE error only e.g. one transcription error:, e.g.395.3 for 393.5
	Total	12	

Q	uesti	on	Answer	Marks	Guidance
6	(a)		Conditions Low/decreased pressure AND high/increased temperature ✓	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
			Pressure: Right-hand/product side has more (gaseous) moles/molecules OR left-hand side/reactant side has fewer (gaseous) moles/molecules ✓		DO NOT ALLOW more atoms on right-hand side OR fewer atoms on left-hand side. DO NOT ALLOW incorrect shift direction
			Temperature: (Forward) reaction is endothermic / takes in heat OR reverse reaction is exothermic / gives out heat ✓		
			Low pressure gives a slow rate OR High temperature uses a large amount of energy/fuel ✓		ORA IGNORE 'expensive'
					IGNORE use of catalyst
	(b)	(i)	$(K_c =) \frac{[SO_3]^2}{[SO_2]^2 [O_2]} \checkmark$ Units: dm ³ mol ⁻¹ \checkmark	2	IGNORE state symbols in K_c expression, even if wrong. For units, ALLOW mol ⁻¹ dm ³ DO NOT ALLOW dm ³ /mol NOTE: If K_c upside down, units become mol dm ⁻³ by ECF No other ECF allowed for units.

PhysicsAndMathsTutor.com

Question	Answer	Marks	Guidance
(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.45, Award 4 marks. Equilibrium concentrations (moles × 2.5) 1 MARK $SO_2 = 0.135 \text{ (mol dm}^{-3}\text{)}$ $AND O_2 = 0.0675 \text{ (mol dm}^{-3}\text{)} \checkmark$	4	FULL ANNOTATIONS NEEDED IF there is an alternative answer, check to see if there is any ECF credit possible using working below
	Calculation of [SO ₃ (g)] 2 MARKS $[SO_3] = \sqrt{(K_c \times [SO_2]^2 \times O_2)}$ OR $\sqrt{((3.045 \times 10^4) \times 0.135^2 \times 0.0675)}$ \(= 6.12039291 \text{ (mol dm}^{-3} \) \(\square \) Answer scores both [SO ₃] marks automatically		ALLOW ECF from incorrect concentrations of SO ₂ and/or O ₂ ALLOW ECF from incorrect [SO ₃] ALLOW 3 SF, 6.12, up to calculator value of 6.12039291 correctly rounded. Common errors
	Calculation of $n(SO_3)$ in 400 cm ³ 1 MARK $n(SO_3) = 6.12039291/2.5 = 2.45 \text{ (mol)} \checkmark$ 3SF required (Appropriate number)		37.5 1 mark No $\sqrt{for} [SO_3]^2$ and no scaling by 1/2.5 15.0 2 marks No $\sqrt{for} [SO_3]^2$ 0.619 3 marks Use of mol of SO_2 and O_2 1.55 2 marks No conc used and Use of mol of SO_2 and O_2
	To	otal 11	

(Quest	ion	Answer	Marks	Guidance
7	(a)	(i)	(rate =) $k [H_2O_2] [I^-] \checkmark$ $k = \frac{rate}{[H_2O_2] [I^-]} = \frac{2.00 \times 10^{-6}}{0.0100 \times 0.0100} = 0.02(00) \checkmark$ units: dm³ mol ⁻¹ s ⁻¹ \checkmark	3	Square brackets required IGNORE any state symbols IGNORE [H ⁺] ⁰ ALLOW ECF from incorrect rate equation BUT units must fit with rate equation used ALLOW mol ⁻¹ dm ³ s ⁻¹ OR in any order NOTE K _c expression with calculation and units 0 marks
	(a)	(ii)	Plot graph using ln <i>k</i> AND 1/ <i>T</i> ✓ (Measure) gradient ✓ Independent mark E _a = (-)R × gradient OR (-)8.314 × gradient ✓ • Independent mark, even if variables for graph are incorrect • Subsumes 'gradient' mark	3	Unless otherwise stated, assume, that In k is on y axis and $1/T$ is on x axis IGNORE intercept ALLOW gradient = $(-)\frac{E_a}{R}$ NOTE: ALLOW 'Inverse graph' (special case) Plot graph of $1/T$ against In $k \checkmark$ (Measure) gradient \checkmark Independent mark $E_a = (-)\frac{R}{\text{gradient}} \text{ OR } (-)\frac{8.314}{\text{gradient}}$ OR gradient = $(-)\frac{R}{E_a} \checkmark$ Subsumes 'gradient' mark

Question	Answer	Marks	Guidance
(b)	ALLOW equilibrium sign in equations provided reactants on left	4	ALLOW correct multiples IGNORE state symbols
	Reaction of H_2O_2 with MnO_2 : $H_2O_2 + MnO_2 + 2H^+ \rightarrow O_2 + Mn^{2+} + 2H_2O \checkmark$ Reaction of H_2O_2 with Mn^{2+} : $H_2O_2 + Mn^{2+} \rightarrow MnO_2 + 2H^+ \checkmark$		ALLOW uncancelled H_2O and H^+ $H_2O_2 + MnO_2 + 4H^+ \rightarrow O_2 + Mn^{2+} + 2H_2O + 2H^+$ $H_2O_2 + Mn^{2+} + 2H_2O + 2H^+ \rightarrow MnO_2 + 4H^+ + 2H_2O$
	Use of <i>E</i> data Use of <i>E</i> data to support equation(s) above or half direction of provided half equations (one including MnO₂) ✓ Also look for evidence around half equations		 Examples More negative E moves to left ORA Reduction half equation to the right ORA Most positive E is reduced ORA Calculated E cell = +0.81 V (from top 2) OR +0.27 V (from bottom 2)
	MnO₂ regenerated/reformed ✓ Must be linked to an equation showing MnO₂ as reactant and an equation showing MnO₂ as product		ALLOW combining of equations above to show that MnO ₂ is used and reformed
(c) (i)	H ₃ C — C O O O O O O O O O O O O O O O O O	1	ALLOW H ₃ C OH OR OH Structure must include OH as part of COOOH group ALLOW -O ⁻ H ⁺ in structure

Question	Answer	Marks	Guidance
(c) (ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 0.023(125) (mol) award 3 marks for calculation ———————————————————————————————————	3	If there is an alternative answer, check for any ECF credit
	Total	14	

Question	Answer	Marks	AO	Guidance
Quoonon	7 410 110 1	marko	element	
8	В	1	AO1.2	

	Question	Answer	Marks	Guidance
9	(a)	$K_{c} = \frac{[NO_{2}]^{2}}{[NO]^{2} [O_{2}]} \checkmark$ Units = dm ³ mol ⁻¹ \checkmark	2	Must be square brackets IGNORE state symbols ALLOW $mol^{-1} dm^3$ ALLOW $mol dm^{-3}$ as ECF from inverted K_c expression
	(b)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 1.2 (mol) award 4 marks Unless otherwise stated, marks are for correctly calculated values. Working shows how values have been derived. $[NO] = \frac{0.40}{4.0} = 0.1(0) \text{ (mol dm}^{-3})$ AND $[O_2] = \frac{0.80}{4.0} = 0.2(0) \text{ (mol dm}^{-3}) \checkmark$ $[NO_2]^2 = 45 \times 0.10^2 \times 0.20 \text{ OR} = 0.09(0) \checkmark$ $[NO_2] = \sqrt{(45 \times 0.10^2 \times 0.20) \text{ OR}} = 0.3(0) \text{ (mol dm}^{-3}) \checkmark$ amount NO ₂ = 0.30 × 4 = 1.2 (mol) \checkmark	4	For all parts, ALLOW numerical answers from 2 significant figures up to the calculator value Ignore rounding errors after second significant figure 1st mark is for realising that concentrations need to be calculated. ALLOW ECF Correct numerical answer with no working would score all previous calculation marks Making point 2 subsumes point 1 Making point 3 subsumes points 2 and 1 Common errors 9.6 = 3 marks mol of NO and O ₂ used 0.36 = 3 marks mol of NO ₂ calculated from [NO ₂] ² 2.4 = 2 marks mol of NO and O ₂ used and no mol of NO ₂ calculated

Question	Answer	Marks	Guidance
(c) (i)	Exothermic AND K _p decreases as temperature increases ✓	1	ALLOW K_c for K_p ALLOW Equilibrium shifts to left hand side as temperature increases
(c) (ii)	Equilibrium shift (Equilibrium position) shifts to right / forward / towards products ✓	3	FULL ANNOTATIONS NEEDED ALLOW K_c for K_p throughout the response.
	Effect of increased pressure on K_p expression Ratio (in K_p expression) decreases OR Denominator/bottom of K_p expression increases more (than numerator/top) \checkmark		ALLOW K_p (initially) decreases for second marking point IF K_p is seen to be restored later in the process.
	Equilibrium shift (K_p expression) Ratio (in K_p expression) increases to restore K_p OR Numerator/top of K_p expression increases to restore K_p		ALLOW more NO ₂ / product formed to restore K_p ALLOW ratio adjusts to restore K_p
	Total	10	

(Quest	ion	Answer	Marks	Guidance
10	(a)		TAKE CARE: Correct final answer of –52.3 OR –52.25 can be obtained from two cancelling errors: Use of 50 for energy released (no ×2 of 50 for two solutions mixed) No ÷ 2 in final step –52.3 OR –52.25 would then be awarded 2 marks out of 4	4	
			Correctly calculates n(succinic acid) = $0.400 \times \frac{50.0}{1000} = 0.02(00) \text{ (mol) } \checkmark$		ALLOW ECF throughout
			Energy released in J OR kJ = 100.00 × 4.18 × 5.0 = 2090 (J) OR 2.090 (kJ) ✓		DO NOT ALLOW less than 3 SF IGNORE units
			Energy released, in kJ or J, for formation of 2 mol H ₂ O		
			$\pm \frac{2090}{0.0200} = \pm 104500 \text{ (J)}$ OR		ALTERNATIVE METHOD n(succinic acid) = 0.02(00) (mol) ✓
			$\pm \frac{2.090}{0.0200} = \pm 104.5 \mathbf{OR} \pm 105 (kJ) \checkmark$		<i>Energy released</i> = 2090 (J) OR 2.090 (kJ) ✓
			$\Delta_{neut} H$ to 3 or more SF AND correct – sign		$n(H_2O)$ formed = 2 × 0.02(00) = 0.04(00) (mol) \checkmark
			$= -\frac{104.5}{2} = -52.3 \text{ OR} - 52.25 \text{ kJ mol}^{-1} \checkmark$		$\Delta_{\text{neut}} \mathbf{H} = -\frac{2.090}{0.0400} = -52.3 \text{ OR} - 52.25 \text{ kJ mol}^{-1} \checkmark$
	(b)	(i)	Titration ✓	1	IGNORE type of titration
		(ii)	$(CH2COOH)2 + 2C2H5OH \rightleftharpoons (CH2COOC2H5)2 + 2H2O \checkmark$	1	ALLOW → instead of ⇒ sign
					ALLOW molecular formulae or hybrid formulae Structures provided on QP e.g. $C_4H_6O_4 + 2C_2H_6O \rightleftharpoons C_8H_{14}O_4 + 2H_2O$

Question	Answer	Marks	Guidance
(iii)		1	IGNORE displayed formulae
(iv)	Volume cancels OR Same number of moles on each side of equation ✓	1	ALLOW units cancel ALLOW (sum of) balancing numbers/coefficients on each side of equation are the same OR same number of (moles of) reactants and products IGNORE volume is the same; K _c has no units
(v)	Moles of equilibrium products $n((CH_2COOC_2H_5)_2) = 0.0300 \text{ (mol)}$ AND $n(H_2O) = 0.0600 \text{ (mol)} \checkmark$ Moles of C ₂ H ₅ OH 1 main $n(C_2H_5OH) = 0.150 - 0.060 = 0.0900 \text{ (mol)} \checkmark$		
	K_c calculated 1 man $= \frac{0.03 \times 0.06^2}{0.02 \times 0.09^2} = 0.667$ OR 0.67 ✓ NOTE: 0.02 must be used for n (succinic acid)	k	ALLOW ECF ALLOW 0.66, 0.666, etc. (2 SF and more) Treated as meaning 0.6 recurring ALLOW 2/3 IGNORE any units
	Total	11	

	Questio	n	Answer Marks	Marks	AO element	Guidance
11	(a)	(i)	More energy is released by forming bonds than energy required when breaking bonds OR bond enthalpy of bonds being made is higher than bond enthalpy of bonds being broken ✓	1	1.2	Response needs link between energy, breaking and making bonds Eg 'bond breaking is endothermic' AND 'bond making is exothermic' AND 'exothermic change outweighs endothermic change' IGNORE more bonds made than broken
		(ii)	FIRST CHECK ΔG If $\Delta G = -1010$ (kJ mol ⁻¹) award first 3 marks $\Delta S = (2 \times 248 + 2 \times 70) - (2 \times 206 + 3 \times 205)$ $= -391 (J K^{-1} mol^{-1}) OR -0.391 (kJ K^{-1} mol^{-1}) \checkmark$	4	2.2 ×3	ALLOW ecf
			$\Delta G = \Delta H - T\Delta S = -1125 - (293 \times -0.391) \checkmark$ $= -1010 \text{ (kJ mol}^{-1}) \checkmark$ For sible AND $\Delta G \in \Omega$ OD ΔG is regarding ΔG		3.2 ×1	ALLOW –1010000 (J mol ⁻¹) ALLOW 3 SF up to calculator value –1010.437 Common errors ALLOW: Two calculation marks for: –1117 to 3 SF up to calculator value of –1117.179865 (use of 20 instead of 293) (+)113438 (kJ mol ⁻¹) or 113000, 113400, 113440 (mix of J and kJ) –1008 up to calculator value of –1008.482 (use of T = 298) –1018 up to calculator value of –1018.257 (use of T = 273) ALLOW ECF for from incorrect Δ G,
			Feasible AND $\triangle G < 0$ OR $\triangle G$ is negative \checkmark			eg Non feasible AND $\Delta G > 0$ OR ΔG is +ve
	а	(iii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = -20 (kJ mol ⁻¹) award 3 marks	3	2.2 ×3	

Question	Answer	Marks	AO element	Guidance
	Using Both \triangle cH° values multiplied by 2 $2 \times (-296.8)$ or -593.6 AND $2 \times (-285.8)$ or -571.6 (= -1165.2) \checkmark Use of -1125 and correctly processed: $2\Delta_f H(H_2S) = [2 \times (-296.8) + 2 \times (-285.8)] - (-1125) = -40.2$ (kJ mol ⁻¹) \checkmark Division by 2 $\Delta_f H(H_2S) = -20$ (kJ mol ⁻¹) \checkmark			First mark may be awarded from data on a cycle
(b) (i)	$(K_p) = \frac{p(SO_3)^2(g)}{p(SO_2(g))^2 \times p(O_2(g))} \checkmark$	2	1.2 ×2	ALLOW species without state symbols and without brackets. e.g., pSO_3^2 , $ppSO_3^2$, PSO_3^2 , $p(SO_3)^2$ (pSO_3) ² etc. DO NOT ALLOW square brackets
	atm ⁻¹ ✓			ALLOW atm as ECF if K_p is upside down ALLOW use of any pressure unit eg Pa ⁻¹ or kPa ⁻¹

Question	Answer	Marks	AO element	Guidance
Question b (ii)	FIRST CHECK THE ANSWER ON ANSWER LINE if answer = 27.2 award 5 marks	Marks 5	AO element 2.6 ×5	Guidance IF there is an alternative answer, check to see if there is any ECF credit possible using working below. Common errors Allow 4 marks for 1.45/1.46 (depending upon rounding) Initial amounts $n(SO_2) = 2 \times n(O_2)$ $n(O_2) = 0.375$ and $n(SO_2) = 0.75(0)$ Equilibrium moles $n(SO_2) 0.75 - 0.350 = 0.4(0)$ $n(O_2) = 0.2(0)$ total moles $n_{tot} = 0.95$ partial pressures
	Partial pressures $\rho SO_2 = (\frac{0.075}{0.625} \times 2.50 =) \ 0.3 \ (atm) \ \textbf{AND}$ $\rho O_2 = (\frac{0.2}{0.625} \times 2.50 =) \ 0.8 \ (atm) \ \textbf{AND}$ $\rho SO_3 = (\frac{0.350}{0.625} \times 2.50 =) \ 1.4 \ (atm) \ \checkmark$ $\textbf{\textit{K}}_p \ \textbf{to} \ \textbf{3 SF}$ $(\textbf{\textit{K}}_p = \frac{1.4^2}{0.3^2 \times 0.8} =) \ 27.2 \ (atm^{-1}) \ \checkmark$			partial pressures $pSO_2 = 1.05$ $pO_2 = 0.526$ $pSO_3 = 0.921$ Allow 4 marks for 15.1/15.0 Initial amounts $n(O_2) = 12/16 = 0.75$ Equilibrium moles $n(O_2) = 0.575$ total moles $n_{tot} = 1.00$ partial pressures $pSO_2 = 0.188$ $pO_2 = 1.438$ $pSO_3 = 0.88$ IGNORE units

Question	Answer	Marks	AO element	Guidance	
b (iii)	(greater K _p value means) equilibrium position shifted to right/RHS ✓ Lower temperature because (forward) reaction is exothermic ✓	2	3.2 ×2	ALLOW greater/higher amount of SO ₃ /product ALLOW greater K_p means larger numerator	
(iv)	equilibrium position (far) to the right ✓	1	3.2	ALLOW (very) high yield of products or of SO ₃ ALLOW reaction is nearly complete / irreversible ALLOW Forward reaction is (greatly) favored ALLOW (far) more product(s) than reactant(s) or ALLOW equilibrium (greatly) favours product	

Question	Answer	Marks	AO element	Guidance
(c) (i)	Correct drawing of Boltzmann distribution Curve starts within one small square of origin AND not touching the x axis at high energy ✓ Axes labels: y: (number of) molecules/particles AND x: (kinetic) energy ✓ Catalyst and activation energy Catalyst provides a lower activation energy OR E _c shown to the left of E _a on Boltzmann distribution ✓ Particles with E > E _a more or a greater proportion of molecules / particles / collisions have (energy above) activation energy (with catalyst) OR more molecules have enough energy to react OR greater area under curve above activation energy ✓	4	1.1 ×4	DO NOT ALLOW two curves Confusion with effect of temperature DO NOT ALLOW 'enthalpy' for x-axis label DO NOT ALLOW 'atoms' as y-axis label ALLOW ECF for atoms (instead of molecules/particles) if y axis labelled as 'atoms' IGNORE (more) successful collisions IGNORE response implying 'more collisions' (confusion with effect of greater temperature)
(ii)	heterogeneous (catalyst) AND catalyst in a different phase/state (from other substances) ✓	1	1.2	ALLOW catalyst is a solid AND not a gas / everything else is a gas
	Total	23		

Question	Answer	Marks	AO element	Guidance
12	В	1	2.6	

Question	Answer	Marks	AO element	Guidance
13 (a)	High pressure AND low temperature ✓ Right-hand side has fewer (gaseous) moles/molecules OR left-hand side has more (gaseous) moles/molecules ✓ (Forward) reaction is exothermic/gives out heat OR reverse reaction is endothermic/takes in heat ✓	3	1.2×1 1.1×2	Marks are independent ORA throughout ALLOW RHS ALLOW suitable alternatives for RHS e.g. product side
(b)	(Reaction can be carried out at) lower temperatures / lower energy demand ✓ Less (fossil) fuels burnt / less CO₂ emissions ✓	2	1.1×2	ALLOW lower pressures as alternative to lower temperature ALLOW reduced carbon footprint as alternative to less fuels burnt ALLOW different reactions can be used with greater atom economy / less waste ALLOW can reduce use of toxic substances

Question	Answer	Marks	AO element	Guidance
(c)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $25.55 \text{ kJ mol}^{-1}$ OR 25550 J mol^{-1} award first 4 marks	5	2.2×4 3.2×1	ALLOW ECF IGNORE units at this stage Units for ΔG required ALLOW 26 kJ mol ⁻¹ OR 26000 J mol ⁻¹ up to calculator value.
	(Reaction is) not feasible AND $\Delta G > 0 \checkmark$			

Question	Answer	Marks	AO element	Guidance
(d)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 2.22 × 10 ⁴ award first 2 marks	3		ALLOW ECF for transcription errors in first sum
	In $K_p = -\Delta G/RT = \frac{2.48 \times 10^4}{8.314 \times 298} = 10.01 \checkmark$		3.1×2	ALLOW 10 up to calculator value of 10.00979992 ALLOW 22200
	$K_p = 2.22 \times 10^4 (3SF required) \checkmark$		1.2×1	ALLOW 2.20 × 10 ⁴ OR 22000 (use of 10)
	Units = atm ⁻² ✓			ALLOW alternatives (k)Pa ⁻² OR N ⁻² m ⁴ OR mmHg ⁻² OR PSI ⁻² OR bar ⁻²
				Common errors for 1 mark: 22400 (use of 8.31) 4.50 x 10 ⁻⁵ (use of -10.01)
	Total	14		

Q	Question		Answer	Marks	AO element	Guidance
14	(a)	(i)	To keep [CH₃OH] (effectively) constant OR Zero order with respect to CH₃OH OR To ensure equilibrium is far to the right ✓	1	3.3	ALLOW Change in [CH ₃ OH] is negligible ALLOW rate is independent of [CH ₃ OH] IGNORE Methanol doesn't run out/is not limiting reagent.
		(ii)	One half-life t⁄₂ between 102 and 110 (mins) Two half-lives calculated OR evidence on the graph of two half-lives AND constant half-life/values (means first order) ✓	2	3.1 3.2	ALLOW any two combinations of positions, e.g. 5 and 2.5 AND 4 and 2 AND 3 and 1.5
		(iii)	Using gradients Evidence of tangent at $t = 0$ and intercept between $100 - 140$ (min) \checkmark Correctly calculated gradient in the range of 2.9×10^{-5} to 4.0×10^{-5} (mol dm ⁻³ min ⁻¹) \checkmark OR Using half-life For $t_2 = 106$ min, $k = \frac{\ln 2}{t_2} = 0.00654$ (min ⁻¹) \checkmark rate $= 0.00654 \times 5 \times 10^{-3}$ $= 3.27 \times 10^{-5}$ (mol dm ⁻³ min ⁻¹) \checkmark	2	3.1×1 3.2×1	ALLOW ECF from value of t½ in (a)(ii)

Question	Answer		Marks	AO element	Guidance
(b)	FIRST CHECK THE ANSWER ON ANS If answer = 7.4 award 4 marks	SWER LINE	4		ALLOW minimum of 2SF throughout
	Initial moles of reactants $n(\text{CH}_3\text{OH}) \text{ initial} = \frac{9.6}{32} = 0.3 \text{-(mol)}$ AND $n(\text{CH}_3\text{COOH}) \text{ initial} = \frac{12}{60} = 0.2 \text{ (mol)}$			1.2×1	
	Equilibrium moles n(CH3COOH) reacted = 0.2 - 0.0 AND n(CH3OH) equil = 0.3 - 0.17 n(CH3COOCH3) equil AND n(H2O) equil	2 marks 3 = 0.17 (mol)		2.8×3	ALLOW ECF from initial moles ALLOW ECF from equilibrium moles Use of V not required but Kc expression must be correct
	K_c calculation $K_c = \frac{0.17/V \times 0.17/V}{0.13/V \times 0.03/V} = 7.4 \checkmark$	1 mark			ALLOW up to calculator answer of 7.41025641
		Total	9		